

py-gfm documentation

[image: Build status] [https://github.com/Zopieux/py-gfm/actions?query=workflow%3A%22Test+and+package%22] [image: Coverage status] [https://coveralls.io/github/Zopieux/py-gfm?branch=master] [image: Documentation status]

This is an implementation of GitHub-Flavored Markdown [https://github.github.com/github-flavored-markdown/] written as an
extension to the Python Markdown [https://pythonhosted.org/Markdown/] library. It aims for maximal
compatibility with GitHub’s rendering.

py-gfm code is under a BSD-style license.

Installation

pip install py-gfm

Quick start

All-in-one extension

import markdown
from mdx_gfm import GithubFlavoredMarkdownExtension

source = """
Hello, *world*! This is a ~~good~~marvelous day!
Here is an auto link: https://example.org/

Le me introduce you to [task lists](https://github.com/blog/1375-task-lists-in-gfm-issues-pulls-comments):

- [] eggs
- [x] milk

You can also have fenced code blocks:

```python
import this
```
"""

Direct conversion:
html = markdown.markdown(
 source, extensions=[GithubFlavoredMarkdownExtension()])

Factory-like:
md = markdown.Markdown(extensions=[GithubFlavoredMarkdownExtension()])
html = md.convert(source)

By module name (not recommended if you need custom configs):
html = markdown.markdown(source, extensions=['mdx_gfm'])

À la carte

import markdown
from gfm import AutolinkExtension, TaskListExtension

html = markdown.markdown(
 source, extensions=[AutolinkExtension(),
 TaskListExtension(max_depth=2)])

Available extensions

	gfm.autolink – Turn URLs into links

	gfm.automail – Turn email addresses into links

	gfm.semi_sane_lists – GitHub-like list parsing

	gfm.strikethrough – Strike-through support

	gfm.tasklist – Task list support

Modules

	gfm – Base module for GitHub-Flavored Markdown

	mdx_gfm – Full extension for GFM (comments, issues)

	mdx_partial_gfm – Partial extension for GFM (READMEs, wiki)

Supported features

	Fenced code blocks

	Literal line breaks

	Tables

	Hyperlink parsing (http, https, ftp, email and
www subdomains)

	Code highlighting for code blocks if Pygments [https://pypi.org/project/Pygments/] is available

	Mixed-style lists with no separation

	Strikethrough

	Task lists

Unsupported features

This implementation does not support all of GFM features and has known
differences in how rendering is done.

	By design, link to commits, issues, pull requests and user profiles are not
supported since this is application specific. Feel free to subclass the
provided classes to implement your own logic.

	There is no emoji support.

	There is no horizontal rule (--- ie. <hr>) support.

	Nested lists are not behaving exactly like GitHub’s: issue #10 [https://github.com/Zopieux/py-gfm/issues/10].

	Contrary to GitHub, only double-tilde’d text renders strikethrough, not single-tile’d: issue #14 [https://github.com/Zopieux/py-gfm/issues/14].

Indices and tables

	Index

	Module Index

	Search Page

gfm.autolink – Turn URLs into links

The gfm.autolink module provides an extension that turns all raw URLs
into marked-up links.

This is based on the web-only URL regex [http://daringfireball.net/2010/07/improved_regex_for_matching_urls] by John Gruber (public domain).

This regex seems to line up pretty closely with GitHub’s URL matching.
Two cases were identified where they differ. In both cases, the
regex were slightly modified to bring it in line with GitHub’s parsing:

	GitHub accepts FTP-protocol URLs;

	GitHub only accepts URLs with protocols or www., whereas Gruber’s regex
accepts things like foo.com/bar.

Typical usage

import markdown
from gfm import AutolinkExtension

print(markdown.markdown("I love this http://example.org/ check it out",
 extensions=[AutolinkExtension()]))

<p>I love this http://example.org/ check it out</p>

	
class gfm.autolink.AutolinkExtension(**kwargs)

	Bases: markdown.extensions.Extension

An extension that turns URLs into links.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
getConfig(key, default='')

	Return a setting for the given key or an empty string.

	
getConfigInfo()

	Return all config descriptions as a list of tuples.

	
getConfigs()

	Return all configs settings as a dict.

	
setConfig(key, value)

	Set a config setting for key with the given value.

	
setConfigs(items)

	Set multiple config settings given a dict or list of tuples.

	
class gfm.autolink.AutolinkPattern(pattern, md=None)

	Bases: markdown.inlinepatterns.Pattern

	
getCompiledRegExp()

	Return a compiled regular expression.

	
handleMatch(m)

	Return a ElementTree element from the given match.

Subclasses should override this method.

Keyword arguments:

	m: A re match object containing a match of the pattern.

	
type()

	Return class name, to define pattern type

	
unescape(text)

	Return unescaped text given text with an inline placeholder.

gfm.automail – Turn email addresses into links

The gfm.automail module provides an extension that turns all raw email
addresses into marked-up links.

Typical usage

import markdown
from gfm import AutomailExtension

print(markdown.markdown("You can mail me at foo@example.org for more info",
 extensions=[AutomailExtension()]))

<p>You can mail me at foo@example.org for more info</p>

	
class gfm.automail.AutomailExtension(**kwargs)

	Bases: markdown.extensions.Extension

An extension that turns email addresses into links.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
getConfig(key, default='')

	Return a setting for the given key or an empty string.

	
getConfigInfo()

	Return all config descriptions as a list of tuples.

	
getConfigs()

	Return all configs settings as a dict.

	
setConfig(key, value)

	Set a config setting for key with the given value.

	
setConfigs(items)

	Set multiple config settings given a dict or list of tuples.

	
class gfm.automail.AutomailPattern(pattern, md=None)

	Bases: markdown.inlinepatterns.Pattern

	
getCompiledRegExp()

	Return a compiled regular expression.

	
handleMatch(m)

	Return a ElementTree element from the given match.

Subclasses should override this method.

Keyword arguments:

	m: A re match object containing a match of the pattern.

	
type()

	Return class name, to define pattern type

	
unescape(text)

	Return unescaped text given text with an inline placeholder.

gfm.semi_sane_lists – GitHub-like list parsing

The gfm.semi_sane_lists module provides an extension that causes lists
to be treated the same way GitHub does.

Like the sane_lists extension, GitHub considers a list to end if it’s
separated by multiple newlines from another list of a different type. Unlike
the sane_lists extension, GitHub will mix list types if they’re not
separated by multiple newlines.

GitHub also recognizes lists that start in the middle of a paragraph. This is
currently not supported by this extension, since the Python parser has a
deeply-ingrained belief that blocks are always separated by multiple newlines.

Typical usage

import markdown
from gfm import SemiSaneListExtension

print(markdown.markdown("""
- eggs
- milk

1. mix
2. stew
""", extensions=[SemiSaneListExtension()]))

eggs
milk

mix
stew

	
class gfm.semi_sane_lists.SemiSaneListExtension(**kwargs)

	Bases: markdown.extensions.Extension

An extension that causes lists to be treated the same way GitHub does.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
getConfig(key, default='')

	Return a setting for the given key or an empty string.

	
getConfigInfo()

	Return all config descriptions as a list of tuples.

	
getConfigs()

	Return all configs settings as a dict.

	
setConfig(key, value)

	Set a config setting for key with the given value.

	
setConfigs(items)

	Set multiple config settings given a dict or list of tuples.

	
class gfm.semi_sane_lists.SemiSaneOListProcessor(parser)

	Bases: markdown.blockprocessors.OListProcessor

	
detab(text)

	Remove a tab from the front of each line of the given text.

	
get_items(block)

	Break a block into list items.

	
lastChild(parent)

	Return the last child of an etree element.

	
looseDetab(text, level=1)

	Remove a tab from front of lines but allowing dedented lines.

	
run(parent, blocks)

	Run processor. Must be overridden by subclasses.

When the parser determines the appropriate type of a block, the parser
will call the corresponding processor’s run method. This method
should parse the individual lines of the block and append them to
the etree.

Note that both the parent and etree keywords are pointers
to instances of the objects which should be edited in place. Each
processor must make changes to the existing objects as there is no
mechanism to return new/different objects to replace them.

This means that this method should be adding SubElements or adding text
to the parent, and should remove (pop) or add (insert) items to
the list of blocks.

Keywords:

	parent: A etree element which is the parent of the current block.

	blocks: A list of all remaining blocks of the document.

	
test(parent, block)

	Test for block type. Must be overridden by subclasses.

As the parser loops through processors, it will call the test
method on each to determine if the given block of text is of that
type. This method must return a boolean True or False. The
actual method of testing is left to the needs of that particular
block type. It could be as simple as block.startswith(some_string)
or a complex regular expression. As the block type may be different
depending on the parent of the block (i.e. inside a list), the parent
etree element is also provided and may be used as part of the test.

Keywords:

	parent: A etree element which will be the parent of the block.

	
	block: A block of text from the source which has been split at

	blank lines.

	
class gfm.semi_sane_lists.SemiSaneUListProcessor(parser)

	Bases: markdown.blockprocessors.UListProcessor

	
detab(text)

	Remove a tab from the front of each line of the given text.

	
get_items(block)

	Break a block into list items.

	
lastChild(parent)

	Return the last child of an etree element.

	
looseDetab(text, level=1)

	Remove a tab from front of lines but allowing dedented lines.

	
run(parent, blocks)

	Run processor. Must be overridden by subclasses.

When the parser determines the appropriate type of a block, the parser
will call the corresponding processor’s run method. This method
should parse the individual lines of the block and append them to
the etree.

Note that both the parent and etree keywords are pointers
to instances of the objects which should be edited in place. Each
processor must make changes to the existing objects as there is no
mechanism to return new/different objects to replace them.

This means that this method should be adding SubElements or adding text
to the parent, and should remove (pop) or add (insert) items to
the list of blocks.

Keywords:

	parent: A etree element which is the parent of the current block.

	blocks: A list of all remaining blocks of the document.

	
test(parent, block)

	Test for block type. Must be overridden by subclasses.

As the parser loops through processors, it will call the test
method on each to determine if the given block of text is of that
type. This method must return a boolean True or False. The
actual method of testing is left to the needs of that particular
block type. It could be as simple as block.startswith(some_string)
or a complex regular expression. As the block type may be different
depending on the parent of the block (i.e. inside a list), the parent
etree element is also provided and may be used as part of the test.

Keywords:

	parent: A etree element which will be the parent of the block.

	
	block: A block of text from the source which has been split at

	blank lines.

gfm.strikethrough – Strike-through support

The gfm.strikethrough module provides GitHub-like syntax for
strike-through text, that is text between double tildes:
some ~~strike-through'ed~~ text

Typical usage

import markdown
from gfm import StrikethroughExtension

print(markdown.markdown("I ~~like~~ love you!",
 extensions=[StrikethroughExtension()]))

<p>I like love you!</p>

	
class gfm.strikethrough.StrikethroughExtension(**kwargs)

	Bases: markdown.extensions.Extension

An extension that adds support for strike-through text between two ~~.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
getConfig(key, default='')

	Return a setting for the given key or an empty string.

	
getConfigInfo()

	Return all config descriptions as a list of tuples.

	
getConfigs()

	Return all configs settings as a dict.

	
setConfig(key, value)

	Set a config setting for key with the given value.

	
setConfigs(items)

	Set multiple config settings given a dict or list of tuples.

gfm.tasklist – Task list support

The gfm.tasklist module provides GitHub-like support for task lists.
Those are normal lists with a checkbox-like syntax at the beginning of items
that will be converted to actual checkbox inputs. Nested lists are supported.

Example syntax:

- [x] milk
- [] eggs
- [x] chocolate
- [] if possible:
 1. [] solve world peace
 2. [] solve world hunger

Note

GitHub has support for updating the Markdown source text by toggling the
checkbox (by clicking on it). This is not supported by this extension, as it
requires server-side processing that is out of scope of a Markdown parser.

Available configuration options

	Name

	Type

	Default

	Description

	unordered

	bool

	True

	Set to False to disable parsing of unordered lists.

	ordered

	bool

	True

	Set to False to disable parsing of ordered lists.

	max_depth

	integer

	∞

	Set to a positive integer to stop parsing nested task
lists that are deeper than this limit.

	list_attrs

	dict, callable

	{}

	Attributes to be added to the or element
containing the items.

	item_attrs

	dict, callable

	{}

	Attributes to be added to the element containing
the checkbox. See Item attributes.

	checkbox_attrs

	dict, callable

	{}

	Attributes to be added to the checkbox element.
See Checkbox attributes.

List attributes

If option list_attrs is a dict, the key-value pairs will be applied to
the (resp.) unordered (resp. ordered) list element, that is
the parent element of the elements.

Warning

These attributes are applied to all nesting levels of lists, that is,
to both the root lists and their potential sub-lists, recursively.

You can control this behavior by using a callable instead (see below).

If option list_attrs is a callable, it should be a function that respects
the following prototype:

def function(list, depth: int) -> dict:

where:

	list is the or element;

	depth is the depth of this list relative to its root list (root lists have
a depth of 1).

The returned dict items will be applied as HTML attributes to the list
element.

Note

Thanks to this feature, you could apply attributes to root lists only.
Take this code sample:

import markdown
from gfm import TaskListExtension

def list_attr_cb(list, depth):
 if depth == 1:
 return {'class': 'tasklist'}
 return {}

tl_ext = TaskListExtension(list_attrs=list_attr_cb)

print(markdown.markdown("""
- [x] some thing
- [] some other
 - [] sub thing
 - [] sub other
""", extensions=[tl_ext]))

In this example, only the root list will have the tasklist class
attribute, not the one containing “sub” items.

Item attributes

If option item_attrs is a dict, the key-value pairs will be applied to
the element as its HTML attributes.

Example:

item_attrs={'class': 'list-item'}

will result in:

<li class="list-item">...

If option item_attrs is a callable, it should be a function that
respects the following prototype:

def function(parent, element, checkbox) -> dict:

where:

	parent is the parent element;

	element is the element;

	checkbox is the generated <input type="checkbox"> element.

The returned dict items will be applied as HTML attributes to the
element containing the checkbox.

Checkbox attributes

If option checkbox_attrs is a dict, the key-value pairs will be applied to
the <input type="checkbox"> element as its HTML attributes.

Example:

checkbox_attrs={'class': 'list-cb'}

will result in:

<input type="checkbox" class="list-cb"> ...

If option checkbox_attrs is a callable, it should be a function that
respects the following prototype:

def function(parent, element) -> dict:

where:

	parent is the parent element;

	element is the element.

The returned dict items will be applied as HTML attributes to the checkbox
element.

Typical usage

import markdown
from gfm import TaskListExtension

print(markdown.markdown("""
- [x] milk
- [] eggs
- [x] chocolate
- not a checkbox
""", extensions=[TaskListExtension()]))

<input checked="checked" disabled="disabled" type="checkbox" /> milk
<input disabled="disabled" type="checkbox" /> eggs
<input checked="checked" disabled="disabled" type="checkbox" /> chocolate
not a checkbox

	
class gfm.tasklist.TaskListExtension(**kwargs)

	Bases: markdown.extensions.Extension

An extension that supports GitHub task lists. Both ordered and unordered
lists are supported and can be separately enabled. Nested lists are
supported.

Example:

- [x] milk
- [] eggs
- [x] chocolate
- [] if possible:
 1. [] solve world peace
 2. [] solve world hunger

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
getConfig(key, default='')

	Return a setting for the given key or an empty string.

	
getConfigInfo()

	Return all config descriptions as a list of tuples.

	
getConfigs()

	Return all configs settings as a dict.

	
setConfig(key, value)

	Set a config setting for key with the given value.

	
setConfigs(items)

	Set multiple config settings given a dict or list of tuples.

	
class gfm.tasklist.TaskListProcessor(ext)

	Bases: markdown.treeprocessors.Treeprocessor

	
run(root)

	Subclasses of Treeprocessor should implement a run method, which
takes a root ElementTree. This method can return another ElementTree
object, and the existing root ElementTree will be replaced, or it can
modify the current tree and return None.

gfm – Base module for GitHub-Flavored Markdown

	
class gfm.AutolinkExtension(**kwargs)

	An extension that turns URLs into links.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
class gfm.AutomailExtension(**kwargs)

	An extension that turns email addresses into links.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
class gfm.SemiSaneListExtension(**kwargs)

	An extension that causes lists to be treated the same way GitHub does.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
class gfm.StandaloneFencedCodeExtension(**kwargs)

	
	
extendMarkdown(md)

	Add FencedBlockPreprocessor to the Markdown instance.

	
class gfm.StrikethroughExtension(**kwargs)

	An extension that adds support for strike-through text between two ~~.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
class gfm.TaskListExtension(**kwargs)

	An extension that supports GitHub task lists. Both ordered and unordered
lists are supported and can be separately enabled. Nested lists are
supported.

Example:

- [x] milk
- [] eggs
- [x] chocolate
- [] if possible:
 1. [] solve world peace
 2. [] solve world hunger

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

mdx_gfm – Full extension for GFM (comments, issues)

An extension that is as compatible as possible with GitHub-flavored
Markdown (GFM).

This extension aims to be compatible with the standard GFM that GitHub uses
for comments and issues. It has all the extensions described in the GFM
documentation [https://guides.github.com/features/mastering-markdown/], except for intra-GitHub links to commits, repositories,
and issues.

Note that Markdown-formatted gists and files (including READMEs) on GitHub
use a slightly different variant of GFM. For that, use
mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension.

	
class mdx_gfm.GithubFlavoredMarkdownExtension(**kwargs)

	Bases: mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension

An extension that is as compatible as possible with GitHub-flavored
Markdown (GFM).

This extension aims to be compatible with the standard GFM that GitHub uses
for comments and issues. It has all the extensions described in the GFM
documentation [https://guides.github.com/features/mastering-markdown/], except for intra-GitHub links to commits, repositories,
and issues.

Note that Markdown-formatted gists and files (including READMEs) on GitHub
use a slightly different variant of GFM. For that, use
mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
getConfig(key, default='')

	Return a setting for the given key or an empty string.

	
getConfigInfo()

	Return all config descriptions as a list of tuples.

	
getConfigs()

	Return all configs settings as a dict.

	
setConfig(key, value)

	Set a config setting for key with the given value.

	
setConfigs(items)

	Set multiple config settings given a dict or list of tuples.

mdx_partial_gfm – Partial extension for GFM (READMEs, wiki)

An extension that is as compatible as possible with GitHub-flavored
Markdown (GFM).

This extension aims to be compatible with the variant of GFM that GitHub
uses for Markdown-formatted gists and files (including READMEs). This
variant seems to have all the extensions described in the GFM
documentation [https://guides.github.com/features/mastering-markdown/], except:

	Newlines in paragraphs are not transformed into br tags.

	Intra-GitHub links to commits, repositories, and issues are not
supported.

If you need support for features specific to GitHub comments and issues,
please use mdx_gfm.GithubFlavoredMarkdownExtension.

	
class mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension(**kwargs)

	Bases: markdown.extensions.Extension

An extension that is as compatible as possible with GitHub-flavored
Markdown (GFM).

This extension aims to be compatible with the variant of GFM that GitHub
uses for Markdown-formatted gists and files (including READMEs). This
variant seems to have all the extensions described in the GFM
documentation [https://guides.github.com/features/mastering-markdown/], except:

	Newlines in paragraphs are not transformed into br tags.

	Intra-GitHub links to commits, repositories, and issues are not
supported.

If you need support for features specific to GitHub comments and issues,
please use mdx_gfm.GithubFlavoredMarkdownExtension.

	
extendMarkdown(md)

	Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.

Keyword arguments:

	md: The Markdown instance.

	md_globals: Global variables in the markdown module namespace.

	
getConfig(key, default='')

	Return a setting for the given key or an empty string.

	
getConfigInfo()

	Return all config descriptions as a list of tuples.

	
getConfigs()

	Return all configs settings as a dict.

	
setConfig(key, value)

	Set a config setting for key with the given value.

	
setConfigs(items)

	Set multiple config settings given a dict or list of tuples.

 Python Module Index

 g |
 m

 		 	

 		
 g	

 	[image: -]
 	
 gfm	

 	
 	
 gfm.autolink	

 	
 	
 gfm.automail	

 	
 	
 gfm.semi_sane_lists	

 	
 	
 gfm.strikethrough	

 	
 	
 gfm.tasklist	

 		 	

 		
 m	

 	
 	
 mdx_gfm	

 	
 	
 mdx_partial_gfm	

Index

 A
 | D
 | E
 | G
 | H
 | L
 | M
 | P
 | R
 | S
 | T
 | U

A

 	
 	AutolinkExtension (class in gfm)

 	(class in gfm.autolink)

 	AutolinkPattern (class in gfm.autolink)

 	
 	AutomailExtension (class in gfm)

 	(class in gfm.automail)

 	AutomailPattern (class in gfm.automail)

D

 	
 	detab() (gfm.semi_sane_lists.SemiSaneOListProcessor method)

 	(gfm.semi_sane_lists.SemiSaneUListProcessor method)

E

 	
 	extendMarkdown() (gfm.autolink.AutolinkExtension method)

 	(gfm.AutolinkExtension method)

 	(gfm.AutomailExtension method)

 	(gfm.SemiSaneListExtension method)

 	(gfm.StandaloneFencedCodeExtension method)

 	(gfm.StrikethroughExtension method)

 	(gfm.TaskListExtension method)

 	(gfm.automail.AutomailExtension method)

 	(gfm.semi_sane_lists.SemiSaneListExtension method)

 	(gfm.strikethrough.StrikethroughExtension method)

 	(gfm.tasklist.TaskListExtension method)

 	(mdx_gfm.GithubFlavoredMarkdownExtension method)

 	(mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension method)

G

 	
 	get_items() (gfm.semi_sane_lists.SemiSaneOListProcessor method)

 	(gfm.semi_sane_lists.SemiSaneUListProcessor method)

 	getCompiledRegExp() (gfm.autolink.AutolinkPattern method)

 	(gfm.automail.AutomailPattern method)

 	getConfig() (gfm.autolink.AutolinkExtension method)

 	(gfm.automail.AutomailExtension method)

 	(gfm.semi_sane_lists.SemiSaneListExtension method)

 	(gfm.strikethrough.StrikethroughExtension method)

 	(gfm.tasklist.TaskListExtension method)

 	(mdx_gfm.GithubFlavoredMarkdownExtension method)

 	(mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension method)

 	getConfigInfo() (gfm.autolink.AutolinkExtension method)

 	(gfm.automail.AutomailExtension method)

 	(gfm.semi_sane_lists.SemiSaneListExtension method)

 	(gfm.strikethrough.StrikethroughExtension method)

 	(gfm.tasklist.TaskListExtension method)

 	(mdx_gfm.GithubFlavoredMarkdownExtension method)

 	(mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension method)

 	
 	getConfigs() (gfm.autolink.AutolinkExtension method)

 	(gfm.automail.AutomailExtension method)

 	(gfm.semi_sane_lists.SemiSaneListExtension method)

 	(gfm.strikethrough.StrikethroughExtension method)

 	(gfm.tasklist.TaskListExtension method)

 	(mdx_gfm.GithubFlavoredMarkdownExtension method)

 	(mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension method)

 	gfm (module)

 	gfm.autolink (module)

 	gfm.automail (module)

 	gfm.semi_sane_lists (module)

 	gfm.strikethrough (module)

 	gfm.tasklist (module)

 	GithubFlavoredMarkdownExtension (class in mdx_gfm)

H

 	
 	handleMatch() (gfm.autolink.AutolinkPattern method)

 	(gfm.automail.AutomailPattern method)

L

 	
 	lastChild() (gfm.semi_sane_lists.SemiSaneOListProcessor method)

 	(gfm.semi_sane_lists.SemiSaneUListProcessor method)

 	
 	looseDetab() (gfm.semi_sane_lists.SemiSaneOListProcessor method)

 	(gfm.semi_sane_lists.SemiSaneUListProcessor method)

M

 	
 	mdx_gfm (module)

 	
 	mdx_partial_gfm (module)

P

 	
 	PartialGithubFlavoredMarkdownExtension (class in mdx_partial_gfm)

R

 	
 	run() (gfm.semi_sane_lists.SemiSaneOListProcessor method)

 	(gfm.semi_sane_lists.SemiSaneUListProcessor method)

 	(gfm.tasklist.TaskListProcessor method)

S

 	
 	SemiSaneListExtension (class in gfm)

 	(class in gfm.semi_sane_lists)

 	SemiSaneOListProcessor (class in gfm.semi_sane_lists)

 	SemiSaneUListProcessor (class in gfm.semi_sane_lists)

 	setConfig() (gfm.autolink.AutolinkExtension method)

 	(gfm.automail.AutomailExtension method)

 	(gfm.semi_sane_lists.SemiSaneListExtension method)

 	(gfm.strikethrough.StrikethroughExtension method)

 	(gfm.tasklist.TaskListExtension method)

 	(mdx_gfm.GithubFlavoredMarkdownExtension method)

 	(mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension method)

 	
 	setConfigs() (gfm.autolink.AutolinkExtension method)

 	(gfm.automail.AutomailExtension method)

 	(gfm.semi_sane_lists.SemiSaneListExtension method)

 	(gfm.strikethrough.StrikethroughExtension method)

 	(gfm.tasklist.TaskListExtension method)

 	(mdx_gfm.GithubFlavoredMarkdownExtension method)

 	(mdx_partial_gfm.PartialGithubFlavoredMarkdownExtension method)

 	StandaloneFencedCodeExtension (class in gfm)

 	StrikethroughExtension (class in gfm)

 	(class in gfm.strikethrough)

T

 	
 	TaskListExtension (class in gfm)

 	(class in gfm.tasklist)

 	TaskListProcessor (class in gfm.tasklist)

 	
 	test() (gfm.semi_sane_lists.SemiSaneOListProcessor method)

 	(gfm.semi_sane_lists.SemiSaneUListProcessor method)

 	type() (gfm.autolink.AutolinkPattern method)

 	(gfm.automail.AutomailPattern method)

U

 	
 	unescape() (gfm.autolink.AutolinkPattern method)

 	(gfm.automail.AutomailPattern method)

License

Copyright 2012, the Dart project authors. All rights reserved.
Copyright 2016, Alexandre Macabies. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.
 * Neither the name of Google Inc. nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	gfm.autolink – Turn URLs into links
	Typical usage

	gfm.automail – Turn email addresses into links
	Typical usage

	gfm.semi_sane_lists – GitHub-like list parsing
	Typical usage

	gfm.strikethrough – Strike-through support
	Typical usage

	gfm.tasklist – Task list support
	Available configuration options
	List attributes

	Item attributes

	Checkbox attributes

	Typical usage

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 py-gfm documentation

 		
 gfm.autolink – Turn URLs into links

 		
 Typical usage

 		
 gfm.automail – Turn email addresses into links

 		
 Typical usage

 		
 gfm.semi_sane_lists – GitHub-like list parsing

 		
 Typical usage

 		
 gfm.strikethrough – Strike-through support

 		
 Typical usage

 		
 gfm.tasklist – Task list support

 		
 Available configuration options

 		
 List attributes

 		
 Item attributes

 		
 Checkbox attributes

 		
 Typical usage

 		
 gfm – Base module for GitHub-Flavored Markdown

 		
 mdx_gfm – Full extension for GFM (comments, issues)

 		
 mdx_partial_gfm – Partial extension for GFM (READMEs, wiki)

